Pseudo-Markovian viscosity solutions of fully nonlinear degenerate PPDEs
نویسندگان
چکیده
منابع مشابه
Comparison of Viscosity Solutions of Fully Nonlinear Degenerate Parabolic Path-Dependent PDEs
We prove a comparison result for viscosity solutions of (possibly degenerate) parabolic fully nonlinear path-dependent PDEs. In contrast with the previous result in Ekren, Touzi & Zhang [10], our conditions are easier to check and allow for the degenerate case, thus including first order path-dependent PDEs. Our argument follows the regularization method as introduced by Jensen, Lions & Sougani...
متن کاملContinuous Dependence Estimates for Viscosity Solutions of Fully Nonlinear Degenerate Parabolic Equations
Using the maximum principle for semicontinuous functions (Differential Integral Equations 3 (1990), 1001–1014; Bull. Amer. Math. Soc. (N.S) 27 (1992), 1–67), we establish a general ‘‘continuous dependence on the nonlinearities’’ estimate for viscosity solutions of fully nonlinear degenerate parabolic equations with timeand space-dependent nonlinearities. Our result generalizes a result by Souga...
متن کاملA Generalized Osgood Condition for Viscosity Solutions to Fully Nonlinear Parabolic Degenerate Equations
Using a generalized assumption of Osgood type, we prove a new comparison result for viscosity sub and supersolutions of fully nonlinear, possibly degenerate, parabolic equations. Our result allows to deal with hamiltonian functions with a quadratic growth in the spatial gradient, under special compatibility conditions with the diffusive terms. It applies in particular to a financial differentia...
متن کاملBoundary Regularity for Viscosity Solutions of Fully Nonlinear Elliptic Equations
We provide regularity results at the boundary for continuous viscosity solutions to nonconvex fully nonlinear uniformly elliptic equations and inequalities in Euclidian domains. We show that (i) any solution of two sided inequalities with Pucci extremal operators is C1,α on the boundary; (ii) the solution of the Dirichlet problem for fully nonlinear uniformly elliptic equations is C2,α on the b...
متن کاملRegularity for Viscosity Solutions of Fully Nonlinear Equations
It is well known that viscosity solutions of (1.1) are C for some 0 < α < 1, and in the case that the functional F is convex, they are C. In this paper we use the Krylov-Safonov Harnack inequality, Jensen’s approximate solutions and some basic lemmas of real analysis to give new and simpler proofs of these results. In (1.1), u is a real function defined in a bounded domain Ω of R and Du denotes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Probability, Uncertainty and Quantitative Risk
سال: 2016
ISSN: 2367-0126
DOI: 10.1186/s41546-016-0010-3